1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
| #include <cstdio> #include <cstring> #include <algorithm> #include <cmath>
using namespace std;
const int N = 200010, M = 18;
int n, m; int w[N]; int lg[N]; int f[N][M]; //查询区间最值 //预处理f数组 void init() { lg[1]=0; for(int i=2;i<=N;i++)lg[i]=lg[i>>1]+1;//预处理对数数组 //f数组的含义区间以i开头,长度为2的j次方的区间的最大值 for (int j = 0; j < M; j ++ ) for (int i = 1; i + (1 << j) - 1 <= n; i ++ ) if (!j) f[i][j] = w[i]; else f[i][j] = max(f[i][j - 1], f[i + (1 << j - 1)][j - 1]); }
int query(int l, int r) { int len = r - l + 1; int k =lg[len]; //查询时找到不大于当前区间长度的最大的2次幂,不难想到2的k次方>=区间的长度的一半 return max(f[l][k], f[r - (1 << k) + 1][k]); }
int main() { scanf("%d", &n); for (int i = 1; i <= n; i ++ ) scanf("%d", &w[i]);
init();
scanf("%d", &m); while (m -- ) { int l, r; scanf("%d%d", &l, &r); printf("%d\n", query(l, r)); }
return 0; }
|